LACO TECHNOLOGIES TECHNICAL REFERENCE GUIDE

VISCOUS VS. MOLECULAR FLOW LEAKS

The flow regime encountered in leak testing is often difficult to determine. It can, however, be estimated by calculating the average mean free path of the gas molecule (I) divided by the estimated leak path diameter (d). Use the following guidelines to determine the flow regime:

VISCOUS FLOW leaks typically occur in systems leaking at atmosphere or larger pressures (I/d < 0.01). Viscous leaks are typically larger than 10^{-5} atm-cc/sec, but can occur at lower leak rates.

MOLECULAR FLOW leaks typically occur under vacuum conditions (I/d > 1.00). Molecular leaks are typically smaller than 10^{-5} atm-cc/ sec.

TRANSITIONAL FLOW occurs between viscous and molecular flow regimes (0.01 < l/d < 1.00).

LEAK RATE CONVERSIONS				
CONVERT FROM	MULTIPLY BY	CONVERT TO		
atm-cc/sec	1.013	mbar-liter/sec		
atm-cc/sec	0.76	torr-liter/sec		
torr-liter/sec	1.33	mbar-liter/sec		
Pa-M3/sec	9.87	atm-cc/sec		
Air oz/yr	6.96 x 10 ⁻⁴	atm-cc/sec		

METHOD	MIN. DETECTABLE LEAK*	LEAK RATE MEASUREMENT	LEAK LOCATION
PRESSURE DECAY	Time Limited, Typically 0.01	Yes	No
ULTRASONIC	0.01	No	Yes
CHEMICAL PENETRANTS	0.001	No	Yes
BUBBLE IMMERSION	10-4	No	Yes
THERMAL CONDUCTIVITY SNIFFING	10-5	Yes	Yes
HALOGEN SNIFFING	10-9	Yes	Yes
HELIUM MASS SPECTROMETER	10-11	Yes	Yes

COMPARISON OF LEAK DETECTION METHODS

*atm-cc/sec

EQUIVALENT LEAK RATES

FREON R12 LEAKAGE	IMMERSION (TIME TO FORM 1	HELIUM LEAK RATE	BUBBLE AIR LEAK RATE*
(OZ/YEAR)	BUBBLE)	(ATM-CC/SEC)	(ATM-CC/SEC)
10.00	13.3 seconds	1.8×10^{-3}	6.7 x 10 ⁻⁴
3.00	44.3 seconds	1.5×10^{-3}	2.0 × 10 ⁻⁴
1.00	133 seconds	1.8×10^{-4}	6.7 x 10 ⁻⁵
0.50	266 seconds	9.0 x 10 ⁻⁵	3.3 x 10 ⁻⁵
0.10	22.2 minutes	1.8 × 10 ⁻⁵	6.7 x 10 ⁻⁶
0.01	222 minutes	1.8 × 10-6	6.7 x 10 ⁻⁷

NOTE: Leak rates are approximate and based on similar test conditions. * Leak rates calculated based on molecular flow.

HELIUM LEAK RATE VS. OTHER GASES

	MULTIPLY HELIUM LEAK RATE BY:		
CONVERT TO	VISCOUS FLOW	MOLECULAR FLOW	
ARGON	0.883	0.316	
NEON	0.626	0.447	
HYDROGEN	2.23	1.41	
NITROGEN	1.12	0.374	
AIR	1.08	0.374	
WATER VAPOR	2.09	0.469	

LEAK RATE VS. PRESSURE

Viscous Flow: $Q_V = K/n (P_1^2 - P_2^2)$ Molecular Flow: $Q_M = K(T/M)^{1/2} (P_1 - P_2)$ Where:

- Q = Leak Rate
- K = Constant relating leak path geometry
- n = Gas Viscosity
- M = Gas Molecular Weight

Example: A helium leak in the viscous flow regime with 10 atmupstream (internal) and 1 atm downstream pressure has a leak rate of 0.001 atm-cc/sec. If the upstream pressure was doubled to 20 atm the new leak rate would be:

$$\begin{aligned} & Q_{V,NEW} = Q_{V,OLD} \left((P_{1,NEW}^2 - P_{2,NEW}^2) / (P_{1,OLD}^2 - P_{2,OLD}^2) \right) \\ & Q_{VNEW} = 0.001 ((20^2 - 1^2) / (10^2 - 1^2)) = 0.004 \text{ atm-cc/sec} \end{aligned}$$

Using the table above the equivalent leak rate for air under the same conditions is: $Q_{VAIR} = 0.004(1.08) = 0.0043$

- T = Absolute Temperature
 P = Upstroom and
- P_{1,2} = Upstream and Downstream Absolute Pressure

LACO TECHNOLOGIES TECHNICAL REFERENCE GUIDE VACUUM TECHNOLOGY

		VA	CUUM/PRE	SSURE			
TO CONVERT FROM	PASCAL	TORR	ATM	MBAR	MICRON	PSIA	IN. HG
PASCAL	1	7.5x10 ⁻³	9.87x10-6	0.01	7.5	1.45x10 ⁻⁴	2.95x10 ⁻⁴
TORR	133	1	1.315x10 ⁻³	1.333	1000	0.01934	0.0394
ATMOSPHERE	1.013x10 ⁵	760	1	1013	7.6x10 ⁵	14.7	29.92 —
MILLIBAR (MBAR)	100	0.75	9.87x10-4	1	750.1	0.0145	0.0295
MICRON	0.1333	0.001	1.316x10-6	1.333x10 ⁻³	1	1.934x10 ⁻⁵	3.94x10 ⁻⁵
PSIA	6.89x10 ³	51.71	0.068	68.9	5.17x104	1	2.036
IN. HG ABS	3.39x10 ³	25.4	0.03342	33.9	2.54x104	0.4912	1

CFM - SCFM - ACFM				
TERM	DEFINITION			
CFM	Cubic feet per minute, displacement of pump chamber at 100% efficiency			
SCFM	Standard cubic feet per minute, mass flow of air at standard conditions			
ACFM	Actual cubic feet per minute, volumetric flow of gas that has been expanded			
	ACFM = SCFM x $\overline{760}$ P = pressure in Torr			
	P			

PUMPING SPEED/LEAK RATE				
FROM	MULTIPLY BY PUMP SPEED	то		
ft³/min	1.697	m³/hr		
m³/hr	0.589	ft³/min		
liters/sec	3.6	m³/hr		
liters/sec	2.12	ft³/min		
FROM	MULTIPLY BY LEAK RATE	ТО		
atm-cc/sec	1.013	mbar-liter/sec		
atm-cc/sec	0.76	torr-liter/sec		
torr-liter/sec	1.33	mbar-liter/sec		

ELEVATION VS. VACUUM				
ELEVATION (FT.)	MAX. RELATIVE VACUUM (IN. HG)	PERCENT LOSS		
0 (sea level)	29.92	0		
1,000	28.85	3.6%		
2,000	27.82	7.0%		
3,000	26.82	10.4%		
4,000	25.84	13.6%		
5,000	24.89	16.8%		
6,000	23.98	19.9%		
7,000	23.06	22.9%		
8,000	22.20	25.7%		
9,000	21.38	28.5%		
10,000	20.58	31.2%		

ABSOLUTE VS. RELATIVE PRESSURE

Absolute Zero (Perfect Vacuum)

3085 West Directors Row, Salt Lake City, UT 84104 | Phone: 801-486-1004 Fax: 801-486-1007 | info@lacotech.com www.lacotech.com