# **TRACER GAS** LEAK TESTING TECHNOLOGY

Meeting Growing Technology and Production Demands



Paul Chamberlain President/CEO



# INTRODUCTION

C TRENDS IMPACTING LEAK TESTING

**B** TWO GENERAL METHODS FOR LEAK TESTING



### TRACER GAS LEAK TESTING PERFORMANCE

### CASE STUDIES

### CONCLUSION



# INTRODUCTION TO LACO TECHNOLOGIES



| Founded:         | 1975                                   |
|------------------|----------------------------------------|
| Headquarters:    | Salt Lake City, Utah USA               |
| Employees:       | 90+ direct employees                   |
| Support Network: | 15+ global reps, distributors and ASFs |
| Customer Reach:  | Over 900 customers in 40 countries     |
| Quality System:  | ISO 9001:2015 & ISO 17025:2017         |
|                  |                                        |

















LACO IS A LEADING MANUFACTURER & SUPPLIER OF LEAK TESTING SYSTEMS, INSTRUMENTS & ACCESSORIES.

### In-house core competencies include

• Engineering, Manufacturing, Calibration Laboratory, and Service & Repair

### Leak Testing Technology (LTS Division)

- Turnkey Production Systems
- Instruments (Leak Detectors) •
- Accessories (Calibrated Leaks, etc.)
- Services (Repair, PM, Calibration)



# THE LEADER IN TRACER GAS LEAK TESTING

### High-Performance Helium Leak Detectors



### Standard Platform Leak Test Systems



### FLEXSTATION Production Leak Test Systems



### FLEXSTATION Production Leak Test Systems





# TRENDS IMPACTING LEAK TESTING

© 2023 LACO Technologies. All Rights Reserved



### MANUFACTURING TRENDS

- Higher Speed
- Lower Down Time
- Lower Costs of Testing
- Better Test Reliability





• Traceability • Equipment Flexibility Automation



# PRODUCT TRENDS

- Lower Cost
- Higher Reliability
- Longer Life
- Higher Product Safety

# • New Product Designs Environmental Considerations Government Regulations



### TECHNOLOGY TRENDS DRIVE LEAK TESTING

### Leak Testing Requirements:

- Find smaller leaks
- Test faster
- Have more confidence in your test results



# TWO GENERAL METHODS FOR LEAK TESTING

© 2023 LACO Technologies. All Rights Reserved



# TRACER GAS AND AIR LEAK TESTING

**TRACER GAS** 

Hard Vacuum Chamber

Sniffing

Accumulation – Chamber

Visual Detection

Direct Flow

Pressure Change

© 2023 LACO Technologies. All Rights Reserved



LACO TECHNOLOGIES

# PRODUCTION LEAK TESTING COMPARISON

### **PRODUCTION LEAK TESTING COMPARISON**



Small/Gas Leaks

**Tracer Gas Leak Testing** 

**Tracer Gas Leak Testing** 



What Can Impact The Measured Leak Rate (Q) – Causing Measurement Uncertainty?

Test Environment (Temperature, Cleanliness)

> Test Instrument (Quality, Design, Upkeep)

© 2023 LACO Technologies. All Rights Reserved

**Test Conditions** 

(Test Speed, Gas Pressure)

> Part Characteristics (Size, Materials)

**Fixture** 

Design (Robust, Seals, Materials)

# AIR LEAK TESTING - THREE APPROACHES

### Bubble Immersion

- Visually look for bubbles emitting from leak defect
- Not easily quantitative

Pressure Decay

(Indirect Method)

- Electronically measure air
  pressure drop in a
  pressurized test part due to
  a leak defect
- Correlate pressure change to leak rate

### Mass Flow (Direct Method) • Electronically measure air flowing into a test part that replaces the air leaking out

of the part due to a leak defect



# AIR LEAK TESTING – THREE APPROACHES





### MEASUREMENT UNCERTAINTY IN AIR LEAK TESTING

Part Rigidity (Volume Stability)



Pressure Stability



# AIR LEAK TESTING – Improve Performance

### Improve Temperature Stability

- Lower test pressures (less adiabatic heating)
- Slower test times (more time to stabilize temp. before measurement)
- Differential method can cancel out some temperature effects

Improve Pressure Stability (more critical for Mass Flow method)

- Precision regulators
- Reference volumes
- Differential flow method

Improve Volume Stability

- Ensure part is rigid or restrained
- Slower test times (more time to stabilize volume before measurement)



### AIR LEAK TESTING - Improve Performance

All efforts to speed up test cycle time or improve sensitivity of the test - will result in more measurement uncertainty and erode confidence in the test results.

This is because **one is constrained by basic laws of physics.** It is very challenging to overcome instabilities when making very small total pressure or total flow air measurements at high speeds.



### TRACER GAS LEAK TESTING

Test part is filled with tracer gas which flows through a leak defect and is detected by a gas detector (usually a Helium Leak Detector) on the opposite side of the boundary.







# Measurement Uncertainty in Tracer Gas Leak Testing

Tracer Gas Contamination

> NOT IMPACTED Part Rigidity

NOT IMPACTED Temperature Stability

> NOT IMPACTED Pressure Stability

# TRACER GAS LEAK TESTING Improving Performance

- Tracer gas contamination is the primary challenge that can impact tracer gas leak testing.
- Noise or background levels of the tracer gas (such as helium) can interfere with the ability to measure the leak – particularly smaller leaks.
- This can be easily overcome by proper design and operation of the leak testing system.



# TRACER GAS LEAK TESTING Alternative to Air Leak Testing

- Because tracer gas leak testing is much more sensitive compared to air leak testing, it  $\bullet$ can be considered as an alternative when faster test cycles or more sensitive leak testing is needed.
- Depending on certain factors, helium tracer gas leak testing can find leaks up to ullet100,000 times smaller than air leak testing methods in a production leak testing environment.
- Tracer gas leak testing is also NOT sensitive to variations in test gas pressure,  $\bullet$ temperature, or test volume – like air leak testing is.



# TRACER GAS LEAK TESTING PERFORMANCE



# TRACER GAS SELECTION The Ideal Tracer Gas

- •Rare in the natural environment (not interfere with measurement)
- •Inert will not chemically react
- Easy to detect separately from other gas species
- •Environmentally friendly
- •Low cost
- •Readily available

# TRACER GAS TESTING PERFORMANCE Candidate Tracer Gases

### Helium

- Most common and most sensitive
- Inert gas, low atmospheric concentrations, sensitive instrument
- Can be easily diluted and/or recovered

### Hydrogen

- Used in limited applications in place of helium (less sensitive)
- Used as forming gas (5% H<sub>2</sub>, 95% N<sub>2</sub>) for safety
- Is highly reactive and present in environment in many forms

### Other Inert Gases

 All other inert gases are either very expensive or have relatively high concentrations in the environment, causing background noise and limiting sensitivity (Argon, for example)



# TRACER GAS TESTING PERFORMANCE Candidate Tracer Gases (con't)

ullet

### Refrigerants

- Good candidates for tracer gas testing ulletwhen the refrigerant is already part of the system to be tested (already charged in the device)
- Often used with the sniffing technique ullet

### Other Gases or Vapors

- device
- ulletgas or vapor

Any other sealed device that has a gas or a volatile liquid inside can be tracer gas tested with the media sealed inside the

Sensitivities and test cycle times will vary greatly depending on the nature of the



### TRACER GAS TESTING PERFORMANCE

| Tracer Gas        | Best Practical<br>Sensitivity (atm.cc/sec) | Can Be<br>Diluted | Can Be<br>Recovered | Test Methods                          | Relative<br>Tracer Gas<br>Cost |
|-------------------|--------------------------------------------|-------------------|---------------------|---------------------------------------|--------------------------------|
| Helium            | 1 x 10-9                                   | Yes               | Yes                 | Vac Chamber, Atm<br>Chamber, Sniffing | High (at 100%<br>Conc.)        |
| Hydrogen          | 1 x 10-5                                   | No                | No                  | Sniffing                              | Low                            |
| Argon             | 1 x 10-6                                   | Not<br>Practical  | Yes                 | Sniffing, Vac Chamber                 | Medium                         |
| Refrigerants      | 1 x 10-6                                   | Νο                | Yes                 | Sniffing, Vac Chamber                 | N/A                            |
| Electrolyte Vapor | 1 x 10-5                                   | N/A               | N/A                 | Sniffing, Vac Chamber                 | N/A                            |



### Helium Leak Testing When is it a good candidate to replace Air Leak Testing?

- Need to speed up test cycle time (not compromising measurement uncertainty or variability of test results)
- Need to tighten up leak rate sensitivity (reject limit)
- The product needs to be tested at high test pressures (higher the pressure, the  $\bullet$ better likelihood for improvement)
- The product contains large internal dead volume ullet
- The product volume (part) cannot be kept stable when pressurized  $\bullet$



### Helium Leak Testing When considering replacing Air Leak Testing

### For Example:

- An air pressure decay application with a leak rate limit of 0.5 sccm (8.3 x 10-3 atm.cc/sec) can sometimes be successfully tested.
- But if there is a demand to speed up the cycle time the results may become less repeatable and the test become impossible to perform.



# Helium Leak Testing When considering replacing Air Leak Testing (con't)

### Potential impact on test results by speeding up test cycle on air leak testing applications.



Result: More variability in test results.



### Helium Leak Testing When considering replacing Air Leak Testing (con't)

### Example:

- Air pressure decay application with a leak rate limit of 0.5 sccm (8.3 x 10-3) atm.cc/sec)
- Substitute helium hard vacuum chamber method using 5% helium, results in an ulletequivalent helium leak rate of 4.2 x 10-4 atm.cc/sec.
- This leak rate is easily achievable with high repeatability using a helium leak ulletdetector
- Because the helium is highly diluted the helium cost is very minimal. ulletResult: Faster cycle times without sacrificing repeatability ulletNOTE: In this application, Hydrogen (forming gas) might also be a candidate ullet



# CASE STUDIES



### AUTOMOTIVE BATTERY PACK (TRAY)

Purpose of leak testing is to prevent ingression and meet IP67 leak tightness requirements

- Leak rate limit would be in the range of 1 sccm. •
- Under some conditions, 1 sccm is within the range of air pressure decay leak testing  $\bullet$ method.
- However, due to large part size (internal dead volume) and potential for volume expansion • (creep) when internally pressurized to only a few psi, air pressure decay is not a good candidate.
- A tracer gas method is recommended. ightarrow







### AUTOMOTIVE BATTERY PACK (TRAY)

### Tracer Gas Methods Using Helium or Forming Gas H<sub>2</sub>











# Fire Protection Sprinkler

Purpose of leak testing is to prevent leakage of water within the sprinkler manifold.

- Leak rate requirement of 3 sccm ullet
- Test pressure of 500 psig
- Need to reduce test cycle time from 12 seconds to 8 seconds
- Due to high test pressure, reducing the cycle time will not allow for temperature stabilization,  $\bullet$ resulting more variability in test results – risking false positives and false negatives
- A helium tracer gas method is recommended using 1% helium  $\bullet$ 
  - Equivalent leak rate: 1x10-3 atm.cc/sec (well within helium tracer gas leak testing capabilities)  $\bullet$





### Fire Protection Sprinkler

### Hard vacuum chamber or accumulation chamber method



### nkler method





### Battery Cell for Solar Panel Storage

Purpose of leak testing is to prevent electrolyte vapors from escaping and prevent humidity from entering the cell.

- Leak rate requirement of 0.01 sccm (1.7x10-4 atm.cc/sec) •
- Too tight for air pressure decay leak testing. ullet
- A helium tracer gas (5% helium) or hydrogen (forming gas) method is recommended
- Options:  $\bullet$ 
  - Helium hard vacuum chamber leak test.
  - Hydrogen (forming gas) automated sniffer leak test.







# 





# TRACER GAS LEAK TESTING

- Much more sensitive compared to air leak testing methods. Able to meet ulletincreasingly stringent application demands.
- Not sensitive to factors such as temperature and test volume variations that can ulletimpact test results.
- Able to replace air leak testing methods in circumstances where measurement  $\bullet$ variability is unacceptable and/or faster cycles are required.
- In many of these applications diluted helium or forming gas  $(5\% H_2)$  can be used, ulletwhich significantly minimizes the cost impact.



# STAY CONNECTED

Check out our website at lacotech.com

Contact us to review your current leak test application sales@lacotech.com

> Join & Follow LinkedIn Group Production Leak Testing

> > lacotech.com/posts

LACO Technologies

ETECTORS

### The industry-leading tracer gas leak test company, offering a complete range of solutions - from leak test instruments and accessories, to turn-key production systems.





# 

© 2023 LACO Technologies. All Rights Reserved

