INGRESS LEAK TESTING Protecting Products from Their Environment

JP De Luca Sales Manager | Leak Detection Product Manager

Overview

- Why Do You Need to Leak Test?
 - Ingression Leak Testing Standards and Guidelines
 - Establishing a Leak Rate
 - **Overview of Leak Testing Methods**
 - Helium leak testing
 - Air/Nitrogen Leak Testing
 - Selecting a Leak Test Method
 - Examples of Ingress Leak Testing Solutions
 - Conclusion

Why Do You Need to Leak Test?

- Production leak testing is implemented to verify the integrity of a manufactured part. It can involve 100% testing or sample inspection.
- The goal of production leak testing is to prevent "leaky" parts from getting to the customer. Because manufacturing processes and materials are not "perfect", leak testing is often implemented

Prevent **OUT Leakage**

- Depletion of Gas in a Sealed Device or System
 - A/C System
 - Pressurized Airbag Inflator
 - Gas Storage Cylinder
- Leaking of Liquids in a Sealed Device or System
 - 55-gallon Drum
 - Liquid Cooling System
 - Drug Delivery System

AIRBAG INFLATOR

Prevent IN Leakage (Ingress)

- Ingression of Water or Dust
 - Handheld Electronic Device
 - Exterior Lighting
- Ingression of Water Vapor
 - Engine Control Module
 - Pyrotechnic Airbag Inflator
 - Electronic Sensors

Prevent IN Leakage (Ingress)

- Ingression of Other Gases
 - Packaged Food Products
 - Pharmaceutical Products
- Ingression of Bacteria
 - Sterile Bioprocess Bags
 - Sterile Packaging

Ingression Leak Testing Standards & Guidelines

- International Electrotechnical Commission (IEC)
 - - Dust and Water Ingression Protection for Electrical Enclosures

• IEC 60529, International Protection (IP) Rating (also called Ingress Protection)

IPXX Code – Int'l Protection Marking, IEC Std 605329 (Ingress Protection Marking)

First	Effective protection against	Second
Digit	solid ingress	digit
0		0
1	>50 mm	1
2	>12.5 mm	2
3	>2.5 mm	3
4	>1 mm	4
5	Dust protected	5
6	Dust tight	6
		6K
		7
		8
		9K

Effective projection against liquid ingress Dripping water (vertically falling drops). Vertically dripping water at an angle of 15°. Water falling as a spray at any angle up to 60° Water splashing against the enclosure from any direction. Water projected from any direction. Water projected in powerful jets from any direction Powerful water jets with increased pressure Immersion, up to 1 m depth Immersion, 1 m or more depth Powerful high temperature water jets

Ingression Leak Testing Standards & Guidelines

- International Electrotechnical Commission (IEC) IEC 60529, International Protection (IP) Rating (also called Ingress Protection) • Dust and Water Ingression Protection for Electrical Enclosures
- MIL-STD-883K
 - Hermeticity of Microelectronic Devices
 - Humidity Ingression Protection MIL-STD-883K

MIL-STD-883K Test Method Standard Microcircuits Downloaded from http://www.everyspec.com

This document and process conversion measures necessary to comply with this change shall be completed by 25 August 2017.

AMSC N/A

Ingression Leak Testing Standards & Guidelines

- International Electrotechnical Commission (IEC) • IEC 60529, International Protection (IP) Rating (also called Ingress Protection) • <u>Dust and Water Ingression Protection for Electrical Enclosures</u>
- MIL-STD-883K
 - Hermeticity of Microelectronic Devices
 - Humidity Ingression Protection <u>MIL-STD-883K</u>
- Integrity Testing for Pharmaceutical Industry
 - ASTM, USP, ISO, PDA, and others
 - Both Out-leakage and Bacteria Ingress
- ASTM
 - Multiple Standards

Ingression Leak Testing Standards & Guidelines

- ingression protection for your product
 - small drop of liquid within 1 hour
 - pressure of 30 psig
 - Example 3: No leak!

• For many applications there may exist no standards or guidelines for determining a leak rate criteria that will ensure appropriate

• Example 1: Parts, under 15 psig of pressure, should not leak more than 1

• Example 2: No moisture ingress after 1 hour of liquid exposure under a

Establishing a Leak Rate

- Understanding the operating conditions of the product
 - Will the product be submerged?
 - Will the product be implanted in a person?
 - Will the product be exposed to weather?
 - Will the product see different altitudes?
 - What is the internal operating pressure of the product?
 - What is the nature of the ingress?
 - What conditions might drive a contaminant into the product?
- Other Criteria
 - What is the expected life time of the product or its content?

Establishing a Leak Rate

- Empirical studies may be necessary to determine what an ideal leak rate might be for a given product.
 - LACO has conducted many studies duplicating operating conditions, measuring ingress leakage (moisture ingress for instance)
 - LACO has extensive experience running tests using our built-in calibrated leak standards – Micro Tube Capillary (MTC) – in mockup parts to replicate various environmental conditions. Data collected is a great reference database to help our customers determine the required leak rate

Overview of Leak Testing Methods

Common Production Leak Testing Methods

Hard Vacuum Test Inside-Out

© 2018 LACO Technologies. All Rights Reserved.

Vacuum

Accumulation Test Inside-Out: Helium Charged Part

ATLAS LACO Helium **Helium Management** Module Helium Pressure

Air/Nitrogen Leak Test Testing

Pressure Decay / Mass Flow

Air Pressure Decay Leak Test Basic Steps

Achieve test pressure and isolate test volume Allow air pressure to stabilize (temperature and volume)

© 2018 LACO Technologies. All Rights Reserved.

Monitor pressure drop. Determine PASS/FAIL Allow air to vent from test volume

Basic Principle of Air Pressure Decay Leak Test

Direct Mass Flow Test – Basic Steps

Bypass fill, then direct fill the test part

Allow air pressure to stabilize Measure Leak Rate (Flow) (temperature and volume) **Determine PASS/FAIL**

Allow air to vent from test volume

Basic Principle of Air Mass Flow Leak Test

Test Time (sec)

Common Production Leak Test Methods with Associated Characteristics

Method	Quantify	Locate	Global 1	Go / No Go	Test Media	Test Volume Dep.²	Relative Cost	Typical Sensitivity (atmcc/sec)
Air Pressure (Vacuum) Decay	Yes	No	Yes	Yes	Air	Yes	Medium	0.01
Mass Flow	Yes	No	Yes	Yes	Air	Yes	Medium	0.01
Dye Liquid Tracers	No	Yes	No	No	Liquid	No	Low	0.001
Bubble Immersion	No	Yes	No	No	Air	No	Low	10-4
Thermal Conductivity Sniffing	Limited	Yes	No	Yes ³	Helium	No	Low	10-5
SF6 Sniffing	Limited	Yes	No	Yes³	SF6	No	Low-Med	10 ⁻⁵ to 10 ⁻⁹
Halogen Sniffing	Limited	Yes	No	Yes³	Halogens	No	Low-Med	10 ⁻⁴ to 10 ⁻⁹
Helium Mass Spec Sniffing	Limited	Yes	No	Yes ³	Helium	No	Med-High	10-7
Helium Mass Spec Atmosphere Accumulation	Yes	No	Yes	Yes	Helium	Yes	High	Approx. 10 -4
Helium Mass Spec Hard Vacuum	Yes	Yes	Yes	Yes	Helium	No	High	10-9
Trace Gas Mass Spec Hard Vacuum	Yes	Yes	Yes	Yes	R134a, SF6, Air, H2, NO ₂ , CO ₂	No	High	10-7 gas dependent

- 1. The test method measures the global leak rate of the part, versus individual leaks.
- 2. The test volume significantly affects the test cycle time and/or sensitivity.
- 3. Result may be operator dependent.

Selecting a Leak Test Method

Selecting a Leak Test Method

Many of these requirements and characteristics have a direct impact on the available leak test method.

Production Rate Part Loading/Unloading Traceability Data Logging Part Marking

PART **CHARACTERISTICS**

Interface/Design Size/Volume Materials of Construction Cleanliness

Equipment Budget Equipment/Machine Specification Run-off / Gauge R&R **Ongoing Process Validation**

Example of Method Selection

	Leak Rate Sensitivity (atmcc/sec)				
Method	> 0.01	0.01 - 10-4	10-4 - 10-6	10 -6 - 10 -8	< 10 ⁻⁸
Tracer Gas Leak Testing					
Helium Sniffing - Manual	Р	С	С	X	X
Helium Sniffing - Robotic	Р	С	С	X	X
Helium Sniffing - Chamber/Clamshell	С	С		X	X
Hard Vacuum Helium - Bombed	X	Р	С	С	С
Hard Vacuum Helium - Prefilled	Р	Р	С	С	С
Hard Vacuum Helium - Gas Inside Part	X	Р	С	С	C
Hard Vacuum Helium - Gas Outside Part	X	Р	С	C	С
Helium Accumulation (Atm/Vac)	С	С	Р	X	X

= Possibly Compatible, but not Ideal

Example of Ingress Leak Testing: Application #1

- Part Description: Sealed Pharmaceutical Packages
- Leak Rate Requirement: Comply with ASTM F2096 and ASTM D3078 **Bubble Testing to Assess Package Integrity**
- Test Pressure: Vacuum
- Selected Leak Testing Method: Bubble Leak Testing

Bubble Leak Tester

- A vacuum is generated above the water
- A pressure differential is created between the inside and the outside of the part
- Bubbles will form at leaking point(s)

Note: Size and stream of bubbles will vary based on the part leakage level

Part is submerged under water

Example of Ingress Leak Testing: Application #2

- Part Description: <u>Sealed</u> Electrical Enclosure
- Leak Rate Requirement: Comply with the IP67 Standard
- Leak Rate Specification: 1 SCCM (typical) CM
- Test Pressure: 1.5 psig
- Selected Leak Testing Method: Pressure Decay

Air Pressure Decay Chamber Test – SEALED Part

Chamber Air Pressure Decay Leak Test Basic Steps

Pre-fill test chamber with reference volume and check pressure for gross leak

Continue fill to achieve test pressure and isolate test volume

Allow air pressure to stabilize (temperature and volume)

Monitor pressure drop. **Determine PASS/FAIL**

Allow air to vent from test volume

Basic Principle of CHAMBER Air Pressure Decay Leak Test

ECHNOLOGIES

Example of Ingress Leak Testing: Application #3

- Leak Testing Application: Hermetically Sealed Device
- Part Description: Small Sealed Part
- Leak Rate Requirement: 1 x 10⁻⁸ atm.cc/sec
- Helium is forced into the part prior to the helium leak test process
- Leak Testing Method: Helium Bombing Method Using the MIL-STD-883K Standard
- - Bombing Pressure: 90 psig
 - Pressurization Time: 5 hours
 - Dwell Time: 30 min.

Hard Vacuum Test Inside-Out: **Bombing Method – MIL-STD-883K**

Step 1: Helium bombing process (several parts at a time)

Step 2: Helium leak testing process

Alternative Solution To Helium Bombing Method

- The Bombing Method Requires
 - One or more bombing chambers
 - A helium management system (to evacuate, pressurize with helium and then vent the helium out of the bombing chamber)
 - The bombing time can be quite long hours (based on the leak rate requirements, the part internal dead space and the maximum bombing pressure the parts can withstand)
 - The bombing method has limitations in terms of leak rate sensitivity (MIL-STD-883K)
- The Alternative
 - This alternative is a good economical solution (App # 4)

• Whenever possible, seal the parts within a helium controlled environment.

Example of Ingress Leak Testing: Application #4

- Leak Testing Application: Sealed Part
- Part Description: Medical Implant
- Leak Rate Requirement: 1 x 10⁻⁹ atm.cc/sec
- Leak Testing Method: Helium Hard Vacuum with Test Chamber
- Part is welded in a controlled environment with a specific % of helium
- Helium is present in the part prior to the helium leak test

Hard Vacuum Test Inside-Out

Pre-filled Part

Vacuum Chamber

Conclusion

- More and more applications are for ingress leak testing.
- The ingress can be of different nature and size, depending on the product, application requirements, standards, etc.
- Defining the correct leak rate for some applications can be challenging and require empirical studies, LACO has extensive experiences in running such studies and helping customers defining the correct leak rates.
- LACO is unique with offering the widest range of leak testing methods to all ingress leak testing requirements.

- LinkedIn Group: **Production Leak Testing**
- Blog: www.lacotech.com/posts
- Website: www.lacotech.com

THANK YOU!

Contact Us to Review Your Current Calibration and Validation Strategy

IPXX Code – Int'l Protection Marking, IEC Std 605329 (Ingress Protection Marking)

	First	Effective protection against	Second
	Digit	solid ingress	digit
	0		0
	1	>50 mm	1
	2	>12.5 mm	2
	3	>2.5 mm	3
	4	>1 mm	4
	5	Dust protected	5
	6	Dust tight	6
			6K
			7
			8
R	ETURN		9K

Effective projection against liquid ingress Dripping water (vertically falling drops). Vertically dripping water at an angle of 15°. Water falling as a spray at any angle up to 60° Water splashing against the enclosure from any direction. Water projected from any direction. Water projected in powerful jets from any direction Powerful water jets with increased pressure Immersion, up to 1 m depth Immersion, 1 m or more depth Powerful high temperature water jets

MIL-STD-883K Test Method Standard Microcircuits Downloaded from http://www.everyspec.com

This document and process conversion measures necessary to comply with this change shall be completed by 25 August 2017.

AMSC N/A

RETURN

